THE STRUCTURE OF $\left[\left(\mathrm{PPh}_{3}\right) \mathrm{PdFe}\left(\mathrm{SC}_{5} \mathrm{H}_{4}\right)_{2}\right] \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$: AN UNUSUAL HETEROBINUCLEAR COMPLEX CONTAINING A WEAK Fe \rightarrow Pd DATIVE BOND

MARTIN COWIE* and RAYMOND S. DICKSON
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G $2 G 2$ (Canada)

(Received October 20th, 1986)

Summary

The structure of $\left[\left(\mathrm{PPh}_{3}\right) \mathrm{PdFe}\left(\mathrm{SC}_{5} \mathrm{H}_{4}\right)_{2}\right] \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ has been determined by X-ray crystallography. This compound crystallizes in the monoclinic space group $C 2 / c$ with $a 39.258(5), b 10.548(2), c 13.612(4) \AA, \beta 101.69(2)^{\circ}, V 5519.7 \AA^{3}$ and $Z=8$. On the basis of 3255 unique observations the structure has refined to $R=0.040$ and $R_{w}=0.046$. The complex is an unusual heterobinuclear $\mathrm{Fe}-\mathrm{Pd}$ species in which the two metals are held together by the bridging cyclopentadienethiolato groups and what appears to be a dative $\mathrm{Fe} \rightarrow \mathrm{Pd}$ bond (2.878(1) \AA).

Introduction

There is considerable current interest in the chemistry of binuclear, mixed-metal complexes [1-4]. Not only should such species be capable of generating unique chemistry by virtue of the adjacent metals [5], but the different reactivities of the inequivalent metai centers should allow further modifications to the chemistry. For the adjacent metals to interact in a cooperative manner with substrate molecules it is imperative that they remain in close proximity during the reaction, and to ensure this, a variety of bridging groups has been utilized which hold the metals together and prevent fragmentation of the complexes [1,3,6-11].

An unusual heterobinuclear complex, in which the metals are bridged by two cyclopentadienethiolato groups, was prepared by Seyferth and coworkers [12] according to eq. 1. Although the expected product was the bisphosphine complex $\mathbf{1}$, elemental analyses, NMR and mass spectral data suggested that the actual product was the monophosphine complex 2. Such a species would have a 14 electron Pd center unless $\mathrm{Fe} \rightarrow \mathrm{Pd}$ dative bonding were invoked, and the lack of reactivity of 2 with $\mathrm{PPh}_{3}, \mathrm{CO}$ and NO supported the dative-bonded formulation [12]. Owing to the

current interest in metal-metal dative bonds [13-17] and to the relative paucity of such species, the X-ray structure determination of $\mathbf{2}$ was undertaken in an attempt to confirm the nature of the bonding. This study, which has been briefly communcated [12]. is reported herein.

Experimental

X-Ray data collection

Red-brown. plate-like crystals of $\left[\left(\mathrm{PPh}_{3}\right) \mathrm{PdFe}\left(\mathrm{SC}_{5} \mathrm{H}_{4}\right)^{2}\right] \cdot 0.5 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{CH}_{3}$. obtained by slow recrystallization from a cooled solution of the product in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene/hexanes mixture, were kindly supplied by Professor Seyferth and coworkers at M.I.T. A suitable crystal was mounted in a random orientation on a glass fiber. Unit cell parameters were obtained from a least-squares refinement of the setting angles of 23 reflections, in the range $13.0^{\circ} \leqslant 2 \theta \leqslant 290^{\circ}$, which were accurately centered on an Enraf- Nonius CAD4 diffractometer using Mo- K_{α} radiation. The $2 / m$ diffaction symmetry and the systematic absences ($h k l: h+h$ odd: $h 0 /: l$ odd) are consistent with the space groups (C and $\sigma 2 / 6$. The centrosymmetric space group was chosen and later verified as the more probable one haned on the successful refinement of the structure with acceptable thermal and positional parameters, reasonable agreement indices and by the location of all hodrogen atoms except those on the toluene methyl group.

Intensity data were collected with the CAD4 diffractometer in the bisecting mode by employing the $\omega-2 \theta$ scan technique up to $2 \theta=52.0^{\circ}$ with graphite-monochromated $\mathrm{Mo}-K_{\alpha}$ radiation. Backgrounds were scanned for 259 of the pak width on either end of the peak scan. The intensities of three standard reflections were measured every 1 h of exposure time to assess possible crystal decomposition or movement. No significant variation in these standards was moted sh no correction was applied to the data. A total of 5713 unique reflections wats measured and processed in the usual way using a value of 0.04 for p [18]: of these. 3255 were considered to be observed and were used in all subsequent calculations. Absorption corrections were applied to the data by using Gaussian integration [19]. See Table 1 for pertinent crystal data and the details of intensity collection.

TABLE 1
SUMMARY OF CRYSTAL DATA AND INTENSITY COLLECTION DETAILS

Compound	$\left(\mathrm{PPh}_{3}\right) \mathrm{PdFe}\left(\mathrm{SC}_{5} \mathrm{H}_{4}\right)_{2} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$
Formula weight	662.9
Formula	$\mathrm{PdFeS}_{2} \mathrm{PC}_{31.5} \mathrm{H}_{27}$
Space group	$C_{2 h}^{6}-C 2 / c$
Cell parameters	
$a(\AA)$	$39.258(5)$
$b(i)$	10.548(2)
$c(\AA)$	13.612(4)
$\beta\left({ }^{\circ}\right.$)	101.69(2)
$V\left(\AA^{3}\right)$	5519.7
Z	8
Density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.595 (calc), 1.59 (obs)
Crystal dimension (mm)	$0.052 \times 0.293 \times 0.262$
Crystal shape	monoclinic plate with short distance along a^{\star} and faces of the forms $\{100\},\{101\},\{011\},\{111\}$
Crystal volume (mm^{3})	0.0475
Temperature (${ }^{\circ} \mathrm{C}$)	23
Radiation $\mu\left(\mathrm{cm}^{-1}\right)$	Mo- $K_{\alpha}(\lambda 0.71069 \AA$) graphite-monochromated 13.905
Range in absorption correction factors	0.646-0.924
Receiving aperture	$2.00+0.5 \tan \theta \mathrm{~mm}$ wide by 4.0 mm high, 173 mm from crystal
Scan speed (${ }^{\circ} \min ^{-1}$)	10.058 to 0.891
Scan width (${ }^{\circ}$)	$0.50+0.350 \tan \theta$, in omega
2θ limits (${ }^{\circ}$)	1.0-52.0
Unique data measured	5713
Unique data used $\left(F_{0}^{2} \geqslant 3 \sigma\left(F_{0}^{2}\right)\right)$	3255
Final number of parameters varied	205
Error in observation of unit weight (GOF)	1.136
$R^{\text {a }}$	0.040
$R_{\text {w }}$	0.046

Structure solution and refinement

The structure was solved in space group $C 2 / c$ using standard Patterson, Fourier and least-squares techniques. All atoms, excluding the toluene methyl hydrogens, were ultimately located. Atomic scattering factors for non-hydrogen atoms [20] and hydrogen [21] were taken from the usual sources. Anomalous dispersion terms [22] for $\mathrm{Pd}, \mathrm{Fe}, \mathrm{S}$ and P were included in F_{c}. The carbon atoms of the PPh_{3} phenyl groups were refined as rigid groups having idcalized $D_{6 h}$ symmetry, $\mathrm{C}-\mathrm{C}$ distances of $1.392 \AA$ and independent isotropic thermal parameters. All hydrogen atoms except the toluene methyl hydrogens, which were found to be disordered (vide infra), were input as fixed contributions. Their idealized positions were calculated after each cycle of refinement from the geometries of their attached carbon atom using a $\mathbf{C}-\mathbf{H}$ distance of $0.95 \AA$. These hydrogen atoms were assigned isotropic

TABI.E. 2
ATOMIC POSITIONAL PARAMETERS $\left(\times 10^{4}\right)$ AND EQUIVALFNT ISOTROPIC THERMAL

Atom	x	y	\because	$1 /$
$\overline{\mathrm{Pd}}$	34885 (1)	4329.865	2064539	$3+$
Fe	$3028.2(2)$	$6310.9(9)$	$2447.5(6)$	25
S(1)	3229.665	3164(2)	3148011	351
$\mathrm{S}(2)$	$3709.9(4)$	583023	11.460	36
P	3788.2(4)	26612		261
(1)	$2986(1)$	$4542(6)$	3152(4)	268
(2)	$2677(1)$	4864(7)	246044	$\therefore \%$
(13)	2547(2)	600975	276569	4.3
((4)	$2783(2)$	04347)	363095	970
(15)	3056(2)	$5546(6)$	38764	3
C(6)	$3394(2)$	6741(6)	15108	31
C(7)	$3039(2)$	686897	9994, 43	3.47
(18)	2874(2)	77830	(49060)	4.4
(19)	31172)	822066	233206	427
(10)	343121	75657)	23769	4.11
C(40) ${ }^{\text {b }}$	5000	9632151	2500	4.24
C(41)	5000	8232(14)	2500	344
(42)	46992)	7509411	$2169(6)$	354
(43)	47022)	225012)	215961	b
C(44)	5000	5564(14)	2500	7.4

"Fstimated standard devations in this and other tables are given in parenthese and correpond to the
 cally independent toltene ring atomo
thermal parameters of $1 A^{2}$ greater than the B (or equivalent isotropic B) of their attached carbon atom. All other non-group atoms were refined anisotropically.

The toluene molecules were found to occupy the $4(e)$ crysallographic diad axes and as a result the methyl hydrogens had to be at least two-fold disordered. In fact. the expected six half-weighted hydrogens were not unambiguously located suggesting further rotational disorder aboul the $\mathrm{C}_{\mathrm{Me}}-\mathrm{C}_{\mathrm{pi}}$ bond.

On the final difference Fourier map the highest 20 peaks (1.60-0.58 a A ") were in the vicinities of the rigid phenyl groups, the disordered methyl hydrogens and the heavier atoms (Pd. Fe, S and P). A typical carbon atom on eatier swtheses had a peak intensity of about 8.7 A

The final positional and thermal parameters of the individual non-hydrogen atoms appear in Table 2, the parameters for the carbon atoms of the rigid phenyl groups are given in Table 3. Anisotropic thermal parameters, hydrogen parameters. least-squares planes. and structure amplitudes are available from MC on request (Tables 6.7.8. and 9, respectisely).

Description of structure and discussion

This structure determination of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{FePd}\left(\mathrm{PPh}_{3}\right)\right] \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}\right.$, confirms the monophosphine formulation 2. suggested by elemental amalyses, the mass spectral and 'H NMR data [12]. The unit cell of this compound contains cight formula units with four toluene molecules of erystallization. There are no unusual

TABLE 3
PARAMETERS FOR THE RIGID-GROUP ATOMS OF [($\left.\left.\mathrm{PPh}_{3}\right) \mathrm{PdFe}\left(\mathrm{SC}_{5} \mathrm{H}_{4}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$

Derived parameters							
Atom	x	y	z				
$\mathrm{C}(11)$	$0.4009(1)$	$0.1816(4)$	$0.2796(3)$	$3.0(1)$			
$\mathrm{C}(12)$	$0.4054(1)$	$0.0507(4)$	$0.2839(3)$	$4.3(2)$			
$\mathrm{C}(13)$	$0.4252(1)$	$-0.0051(3)$	$0.3693(4)$	$5.7(2)$			
$\mathrm{C}(14)$	$0.4406(1)$	$0.0700(5)$	$0.4504(3)$	$5.5(2)$			
$\mathrm{C}(15)$	$0.4360(1)$	$0.2009(5)$	$0.4460(3)$	$5.3(2)$			
$\mathrm{C}(16)$	$0.4162(1)$	$0.2567(3)$	$0.3606(4)$	$4.3(2)$			
$\mathrm{C}(21)$	$0.3519(1)$	$0.1472(4)$	$0.0886(3)$	$2.9(1)$			
$\mathrm{C}(22)$	$0.3160(1)$	$0.1473(4)$	$0.0811(3)$	$3.2(1)$			
$\mathrm{C}(23)$	$0.29554(7)$	$0.0558(4)$	$0.0233(3)$	$3.7(1)$			
$\mathrm{C}(24)$	$0.3110(1)$	$-0.0358(4)$	$-0.0269(3)$	$3.9(1)$			
$\mathrm{C}(25)$	$0.3469(1)$	$-0.0360(4)$	$-0.0193(3)$	$4.8(2)$			
$\mathrm{C}(26)$	$0.36731(8)$	$0.0555(4)$	$0.0385(3)$	$4.1(1)$			
$\mathrm{C}(31)$	$0.4134(1)$	$0.2948(4)$	$0.0969(3)$	$2.9(1)$			
$\mathrm{C}(32)$	$0.4479(1)$	$0.2645(4)$	$0.1364(3)$	$4.0(1)$			
$\mathrm{C}(33)$	$0.47330(8)$	$0.2860(5)$	$0.0803(3)$	$5.3(2)$			
$\mathrm{C}(34)$	$0.4641(1)$	$0.3380(5)$	$-0.0154(3)$	$4.8(2)$			
$\mathrm{C}(35)$	$0.4296(1)$	$0.3683(4)$	$-0.0550(3)$	$4.6(2)$			
$\mathrm{C}(36)$	$0.40420(9)$	$0.3468(4)$	$0.0012(3)$	$3.8(1)$			

Rigid group parameters

	$X_{\mathrm{c}}{ }^{a}$	Y_{c}	Z_{c}	Delta ${ }^{\text {b }}$	Epsilon	Eta
Ring 1	$0.42072(7)$	$0.1258(3)$	$0.3650(2)$	$-0.188(3)$	$-2.733(3)$	$0.906(3)$
Ring 2	$0.33143(7)$	$0.0557(3)$	$0.0309(2)$	$-2.027(3)$	$2.719(3)$	$-0.513(3)$
Ring 3	$0.43875(8)$	$0.3164(3)$	$0.0407(2)$	$1.094(4)$	$2.473(2)$	$-1.085(4)$

${ }^{a} X_{c}, Y_{c}$ and Z_{c} are the fractional coordinates of the centroid of the rigid group. ${ }^{\text {b }}$ The rigid group orientation angles Delta, Epsilon, and Eta (radians) have been defined previously: S.J. La Placa and J.A. Ibers, Acta Crystallogr., 18 (1965) 511.
intermolecular contacts involving either the complex or the solvent molecules. Apart from the methyl group disorder, the toluene molecule is well behaved and quite unexceptional. A perspective view of the complex, with some relevant bond lengths and angles, is shown in Fig. 1. More complete bond length and angle tabulations are given in Tables 4 and 5, respectively.

The complex molecule is a rather unusual heterobinuclear $\mathrm{Fe}-\mathrm{Pd}$ complex in which the metal centers are held together by the cyclopentadienethiolato groups $\left(\mathrm{SC}_{5} \mathrm{H}_{4}\right)$ and what appears to be a dative $\mathrm{Fe} \rightarrow \mathrm{Pd}$ bond (vide infra). The $\mathrm{SC}_{5} \mathrm{H}_{4}$ ligands are η^{5}-bound through the carbon atoms in a pseudo-trans configuration to iron (much as in ferrocene and its derivatives) and are σ-bound to Pd through the sulfur atoms.

The coordination about Pd is a slightly distorted square plane in which the sulfur atoms are mutually trans, as are the PPh_{3} group and the Fc atom of the ferrocenyl moiety. The major distortion from square planar geometry results because Pd lies towards the PPh_{3} group, away from Fe such that the $\mathrm{S}-\mathrm{Pd}-\mathrm{Fe}$ angles are acute (see Fig. 1). In addition, the PPh_{3} group is bent away from $\mathrm{S}(2)$ towards $\mathrm{S}(1)$ in order to relieve the interactions between phenyl ring 3 and $S(2)$, which are eclipsed $\left(\mathrm{S}(2)-\mathrm{Pd}-\mathrm{P}-\mathrm{C}(31)\right.$ torsion angle $\left.=8.10^{\circ}\right)$. The most significant such non-bonded

 parameters. Thermal ellipsoids are hown at the 20 G level.

TABLE 4
SELFCTED INTERATOMIC DISTANCES (A) IN [($\left.\mathrm{PPh}_{3}\right) \mathrm{PdFe}\left(\mathrm{SC}_{5} \mathrm{H}_{4}\right)_{2} \cdot 0.5\left(\mathrm{H}_{3} \mathrm{C}_{4} \mathrm{H}_{5}\right.$

Bonding distonces			
$\mathrm{Pd}-\mathrm{Fe}$	$2.878(1)$	P^{-}-C(21)	1.829(4)
$\mathrm{Pd}-\mathrm{P}$	$2.241(2)$	$\mathrm{P}_{-} \mathrm{C}(31)$	$1.837(5)$
$\mathrm{Pd}-\mathrm{S}(1)$	$2.309(2)$	(1)-(2)	$1.489(\mathrm{C})$
$\mathrm{Pd}-\mathrm{S}(2)$	$2.294(2)$	(12)-C(3)	$1406(9)$
$\mathrm{Fe}-\mathrm{C}(1)$	$2.119(6)$	(13) C(4)	1.4179)
$\mathrm{Fe}-\mathrm{Cl} 2)$	$2.060(6)$	C(4) $C(5)$	$1.410(9)$
$\mathrm{Fe}-\mathrm{Cl} 3)$	$2.048(7)$	(11)-C(5)	1.4098
$\mathrm{Fe}-\mathrm{C}(4)$	2.0416)	C(6)-C(7)	1.43291
$\mathrm{Fe}-\mathrm{C}(5)$	$2.080(6)$	(17) (18)	1.4639
$\mathrm{Fe}-\mathrm{C}(6)$	$2.154(6)$	C(8)-C(9)	1.411100
$\mathrm{Fe}-\mathrm{Cl}(7)$	2.06769	(9)-C(10)	1.403010
Few $\mathrm{C}(8)$	$2.039(7)$	$\mathrm{C}(6)-\mathrm{C}(10)$	$1.448(8)$
$\mathrm{Fe}-\mathrm{Cl} 9)$	2.05647	C(40)-(4)	148(2)
$\mathrm{Fe}-\mathrm{Cl}(10)$	2.08017	(141)-(142)	1.401)
$\mathrm{S}(1)-\mathrm{C}(1)$	$1.742(6)$	(42$)-$ C(43)	1.34)
S(2)-C(6)	$1.720(6)$	(143)-C(44)	1.801)
P.C(11)	$1.829(4)$		

Nom-bonding distances

$\mathrm{Fe}-\mathrm{Cp}(1)^{a}$	1.683	$\mathrm{~S}(1)-\mathrm{H}(3)$	78.6
$\mathrm{Fe}-\mathrm{CP}(2)$	1.693	$\mathrm{~S}(1)-\mathrm{H}(22)$	2.89
$\mathrm{H}(5)-\mathrm{H}(36)^{n}$	2.27	$\mathrm{~S}(2)-\mathrm{H}(43)$	3.04
$\mathrm{~S}(1)-\mathrm{C}(11)$	$3.494(5)$	$\mathrm{S} 2)-\mathrm{H}(36)$	3.04
$\mathrm{~S}(2)-\mathrm{C}(36)$	$3.332(5)$		

[^0]TABLE 5
SELECTED ANGLES $\left({ }^{\circ}\right)$ IN $\left[\left(\mathrm{PPh}_{3}\right) \operatorname{PdFe}\left(\mathrm{SC}_{5} \mathrm{H}_{4}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$
Bond angles
$\mathrm{Fe}-\mathrm{Pd}-\mathrm{S}(1)$
$\mathrm{Fe}-\mathrm{Pd}-\mathrm{S}(2)$
$\mathrm{Fe}-\mathrm{Pd}-\mathrm{P}$
$\mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(2)$
$\mathrm{S}(1)-\mathrm{Pd}-\mathrm{P}$
$\mathrm{S}(2)-\mathrm{Pd}-\mathrm{P}$
$\mathrm{Cp}(1)-\mathrm{Fe}-\mathrm{Cp}(2)^{a}$
$\mathrm{Pd}-\mathrm{Fe}-\mathrm{Cp}(1)$
$\mathrm{Pd}-\mathrm{Fe}-\mathrm{Cp}(2)$
$\mathrm{Pd}-\mathrm{S}(1)-\mathrm{C}(1)$
$\mathrm{Pd}-\mathrm{S}(2)-\mathrm{C}(6)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(5)$
$S(2)-C(6)-C(7)$
$\mathrm{S}(2)-\mathrm{C}(6)-\mathrm{C}(10)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$
$C(4)-C(5)-C(1)$
$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(7)$
Torsion angles ${ }^{c}$

$\mathrm{C}(1)-\mathrm{Cp}(1)-\mathrm{Cp}(2)-\mathrm{C}(6)$	1.18	$\mathrm{~S}(1)-\mathrm{Pd}-\mathrm{Fe}-\mathrm{Cp}(2)$	177.76
$\mathrm{C}(2)-\mathrm{Cp}(1)-\mathrm{Cp}(2)-\mathrm{C}(7)$	1.24	$\mathrm{~S}(1)-\mathrm{Pd}-\mathrm{Fe}-\mathrm{C}(6)$	176.56
$\mathrm{C}(3) \mathrm{Cp}(1) \mathrm{Cp}(2) \mathrm{C}(8)$	1.19	$\mathrm{~S}(2)-\mathrm{Pd}-\mathrm{Fe}-\mathrm{Cp}(1)$	179.50
$\mathrm{C}(4)-\mathrm{Cp}(1)-\mathrm{Cp}(2)-\mathrm{C}(9)$	0.88	$\mathrm{~S}(2)-\mathrm{Pd}-\mathrm{Fe}-\mathrm{C}(1)$	-177.56
$\mathrm{C}(5)-\mathrm{Cp}(1)-\mathrm{Cp}(2)-\mathrm{C}(10)$	0.67	$\mathrm{~S}(1)-\mathrm{Pd}-\mathrm{P}-\mathrm{C}(11)$	-48.31
$\mathrm{~S}(1)-\mathrm{Cp}(1)-\mathrm{Cp}(2)-\mathrm{S}(2)$	1.37	$\mathrm{~S}(1)-\mathrm{Pd}-\mathrm{P}-\mathrm{C}(21)$	71.50
$\mathrm{~S}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{S}(2)$	1.33	$\mathrm{~S}(1)-\mathrm{Pd}-\mathrm{P}-\mathrm{C}(31)$	-168.71
$\mathrm{~S}(1)-\mathrm{Pd}-\mathrm{Fe}-\mathrm{Cp}(1)$	-3.88	$\mathrm{~S}(2)-\mathrm{Pd}-\mathrm{P}-\mathrm{C}(11)$	128.50
$\mathrm{~S}(1)-\mathrm{Pd}-\mathrm{Fe}-\mathrm{C}(1)$	-1.94	$\mathrm{~S}(2)-\mathrm{Pd}-\mathrm{P}-\mathrm{C}(21)$	-111.69
$\mathrm{~S}(2)-\mathrm{Pd}-\mathrm{Fe}-\mathrm{Cp}(2)$	2.14	$\mathrm{~S}(2)-\mathrm{Pd}-\mathrm{P}-\mathrm{C}(31)$	8.10
$\mathrm{~S}(2)-\mathrm{Pd}-\mathrm{Fe}-\mathrm{C}(6)$	0.94	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	2.47

${ }^{a} \mathrm{Cp}(1)$ and $\mathrm{Cp}(2)$ are the centroids of cyclopentadienyl groups 1 and 2 , respectively. ${ }^{b} \mathrm{Atoms} \mathrm{C}(42)^{\prime}$
and $\mathrm{C}(43)^{\prime}$ are related to $\mathrm{C}(42)$ and $\mathrm{C}(43)$, respectively, by the symmetry operation $1-x, y, 1 / 2-z$.
${ }^{{ }^{\prime} \text { Torsion angles are the conformation angles about the central bond shown. }}$
contact (3.332(5) \AA), between $S(2)$ and $C(36)$, is much smaller than the Van der Waals distance of ca. $3.70 \AA$ and in the absence of the observed distortion would be even less favorable. Atom $S(1)$, on the other hand, is staggered with regard to the other phenyl groups (Table 5) resulting in less severe interactions involving these groups; the shortest $\mathrm{S}(1)$-phenyl carbon contact ($\mathrm{S}(1)-\mathrm{C}(11) 3.494(5) \AA$) is significantly longer than that observed for $S(2)$. The Pd-S distances (av. $2.302 \AA$) appear normal although they are at the short end of the range observed (2.288(3)-2.431(3) \AA) in a variety of mono- and dithiolato $\mathrm{Pd}^{\mathrm{II}}$ complexes [23-27]. Similarly the $\mathrm{Pd}-\mathrm{P}$ distance $(2.241(2) \AA)$ is one of the shortest observed in typical $\mathrm{Pd}_{\mathrm{P}} \mathrm{PPh}_{3}$ complexes (2.230(4)-2.344(2) $\AA)[25,28-33]$ and is also shorter than such distances obtained in several compounds in which the phosphine ligand is coordinated trans to another
metal (2.271-2.296 A) [34-36]. These short Pd-S and Pd-P distances may be a consequence of the coordinative unsaturation at Pd which would result in these electron donating ligands being tightly bound to the electron deficient metal center.

The geometry about Fe is surprisingly close to that of ferrocene even though Pd seems to be coordinated to the iron center: the two eclipsed $\mathrm{SC}_{5} \mathrm{H}_{4}$ groups are only 19.6° from parallel. This small tilt of the $\mathrm{SC}_{5} \mathrm{H}_{4}$ groups away from the Pd atom results in a rather large $\mathrm{Cp}(1)-\mathrm{Fe}-\mathrm{Cp}(2)[37]$ angle of 165.2°. By comparison. in other bis(cyclopentadienyl) metal complexes. Cp ML, in which one or more groups, L_{n}. are bound to the metal, the $\mathrm{Cp}-\mathrm{M}-\mathrm{Cp}$ angles are within the range $126143^{\circ}[38 \quad 44]$. The relatively small tilt of the $\mathrm{SC}_{4} \mathrm{H}_{4}$ groups in the present species may suggest that the Fe Pd interaction is weak. If is atso possible that this small tilt represents a compromise between the electronic requirements of the Fe Pd and S atoms. A significantly greater tilt of the $\mathrm{SC}_{5} \mathrm{H}_{4}$ groups would result in longer (and presumably less favorable) $\mathrm{Pd}-\mathrm{S}$ contacts. and C S Pd angles which are even more acute than those presently observed.

The parameters within the cyclopentadienethiolato groups are essentially as expected; for example, the average C-C distance of 1.42 A compares well with the predicted value of $143 \AA[45]$ and the C, C C angles (av. 1080°) are quite iypical Both S-C distances (1.742(6) and 1.720(6) A) appear normal [23-27] but show some shortening suggesting a slight degree of multiple bond character. A nomal S C single bond involving an $s p^{2}$ carbon might be expected at about 1.77 A $[46]$. In both $\mathrm{SC}_{5} \mathrm{H}_{4}$ ligands the rings are tilted such that the carbons hound to sulfur are furthest from Fe whereas those at the opposite side of the Cp rings (C13) (14) C C 8) and $\mathrm{C}(9))$ are closest to Fe . Nevertheless, the range in Fe - C distances (2.15466) 2.039(7) A) again appears to be normal. Although the Cp rings are close to being planar (see supplementary Table 8), calculations excluding the carbon atoms hound to S indicate that these carbon atoms are outwardly displaced from the planes of the other Cp carbon atoms by $0.037(6)$ A for Cp ring 1 and $0.059(6)$ A for Cp ring 2. Similarly $S(1)$ and $S(2)$ are displaced $0.148(2)$ and $0.212(2)$ A from these same planes. The greater distortion of Cp ring 2 is probably due to its seric interactions with phenyl ring 3 (vide supra).

The $\mathrm{Fe}-\mathrm{Pd}$ distance ($2.878(1) \mathrm{A}$) is rather long for a single bond but corresponds. we suggest, to a weak dative $\mathrm{Fe} \rightarrow \mathrm{Pd}$ bond. This bond is necessary to give Pd a favorable 16 e configuration; without it a very unsaturated and reactive 14 e configuration would result. Although the $\mathrm{Fe}-\mathrm{Pd}$ distance is long (it is significanty greater than those observed in clusters containing $\mathrm{Fe}-\mathrm{Pd}$ single bonds (2.599(1) 2.698(1) A) [47]), it is not unreasonably long for such a bond; Pd Pd bonding distances up to $2.790(2) \mathrm{A}[48]$ and $\mathrm{Fe}-\mathrm{Fe}$ bonding distances up to $2.890(6) \mathrm{A}$ [49] have been reported. Somewhat similar weak iron metal interactions have also been noted in silver and copper dimethylaminomethylferrocene complexer [50.51]. (309163) and $2.945(5) \AA$. respectively) and in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right)\right]^{\prime}\left(2.818(9) \mathrm{A}^{\circ}[521)\right.$. It is also significant that rather small tilts of the $C p$ rings (6.5 to 16°) were again observed in these latter compounds and that the largest tilt, in the god complex. seems to correspond to the strongest metal-iron interaction and corresponds closely to the value which we observe in the $\mathrm{Fe}-\mathrm{Pd}$ complex.

Although we have suggested that the bonding in the present complex involves a dative $\mathrm{Fe} \rightarrow \mathrm{Pd}$ bond. this is based only on the consideration of the $\mathrm{Fe}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~S}\right)_{2}$ moiety as a ferrocene-like system with an 18 -electron iron. Other canonical forms

(I)

(II)

(III)
which should be considered are shown in structures II and III. Structure I is the electronic form we have considered in our previous discussions; however, structure II may also be a significant contributor to the actual electronic structure, having an electron-deficient 16 -electron iron, until the 2 -electron donor bond from the 16 -electron palladium is considered. Such a structure would certainly explain the somewhat shortened $\mathrm{C}-\mathrm{S}$ bonds (vide supra), which suggest some multiple-bond character, and also the tilting of the $\mathrm{Cp}-\mathrm{S}$ planes, which suggests a weaker bonding of the sulfur-bound carbons to the iron. The $\mathrm{C}-\mathrm{C}$ bond lengths within the Cp rings also show tendencies consistent with this canonical structure, but not at a statistically significant level; such small differences could well be masked by thermal vibration of the ring atoms. Structure II is therefore a plausible alternative. Structure III and its obvious "twin" (with the localized double bonds on the other ring) show a more conventional metal-metal bond, with one electron contributed from each metal, and would be consistent with the same bonding distance trends as structure II. The actual structure may in fact have significant contributions from all three resonance forms.

The crystal structures of several [1]-, [2]- and [3]-ferrocenophanes provide useful comparisons with the parameters of the present compound. Of these, the [3]-ferrocenophanes generally display significantly smaller tilts of the Cp rings from the parallel configuration (8.8-12.5 ${ }^{\circ}$ for C_{3} bridges [53-57], 2.4-6.2 ${ }^{\circ}$ for bridges involving large heteroatoms) [11,58-63] than those for [2]-ferrocenophanes (about 23°) [64-67] or [1]-ferrocenophanes (16.6-27.1 ${ }^{\circ}$; heteroatom bridges only) [68,69]. The tilts for the [1]- and [2]-ferrocenophanes clearly result from the short bridge lengths, which pinch the cyclopentadienyl groups together at the bridge location. For the carbon-bridged [3]-ferrocenophanes, the smaller tilts are due to the increased bridge length and flexibility, whereas for the heteroatom-bridged [3]-ferrocenophanes, the rings are actually forced apart very slightly at the bridges, but the angles remain small due to the flexibility of the bridges. In the present compound
the bridge is also three atoms in length, but has a rigid structure by wrtue of the pseudo-trans alignment of the thiolate sulfurs about Pd and the Pd Fe bond. This rigidity forces the Cp groups apart, causing them to tilt significanth anay from the bridge. The ferrocenophane structures which probably offer the hest comparisons with the present compound are $\left[\mathrm{Fe}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~S}\right)_{2} \mathrm{~S}\right][58]$ and $\left.\left[\mathrm{Fu} \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Se}\right]$ [59]. in which the $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)$ unt of the present moleate is replaced by s and Se respectively, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{AsMe}_{2}\right)_{2} \mathrm{Nil},(\mathrm{CO})\right][60]$ and a series of closely related complexes by Cullen and coworkers [11.62,63]. containing cyclopentadienephopphime bridging groups. The major difference berween all of these compounds and $\left[\left(\mathcal{C}, \mathrm{H}_{4} \mathrm{~S}\right)\right.$, FeP d(PPh_{3})] is the angle at the central bridging atom (S . Se. Ni. Mo. Rh. or Pd). which ranges from about 93 to 104° in the above spectes. In all case involving metak at the bridgehead position the substituted cyclopentadieny groups are houm a is to the bridging metal, whereds in the present compound the arangement is amost foms ($\mathrm{S}(1) \mathrm{Pd} \mathrm{S}(2) 168.60(7)^{\circ}$). The strain induced by this psento-moms arrangement causes the large tilt (19.6°) of the Cp rings. compared to smather tht angles of between 2 and 6.2° for the ahowe ferrocenophanes.

Other angles and distances in the present compound indicate that it has other associated steric strains. The ($-\mathrm{S}-\mathrm{Pd}$ angles in this Pd complex are very acute. averaging 82.1°, while the comparable angles average 102.8 and 102.3° for the S and Se species, and around 120° for all metal-bridged species. The sceve stran indicated in the present compound strongly supports the existence of Fe Pd bonding in this complex. Furthermore the sulfur atoms in the preaent compound are displaced 0.15 and 0.21 A out of the C ping planes away from the iron, while the sulfur atoms are coplanar with the Cp rings in the S-bridged spectex and only 0.04 A out of the plane with the Se-bridged species. In the nickel arsine complex the arsenic atoms are only 0.00 and 006 A out-of-plane towats the inan. In fermcenylphosphine complexes of Cullen. a large variation in the posithons of the phosphorus atoms relative to the Cp planes was observed $\mid 1.62 .63]$: hexe devations from planarity seem to he due to the bulk of the phosphine substituents. Clearly in the present compound such arguments camot be uxed since there are no substituents other than the Cpring on sulfur and the compex is rather fre of severe steric interactions other than those noted. which are brought about the $\mathrm{Fe} \rightarrow \mathrm{Pd}$ interaction. A similar direction and magnitude of displatement was alon observed in $\mathrm{Sn}\left[\left(\mathrm{SeC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Fe}\right]_{2}[61]$. in which the selenium atoms are displaced outward from the Cp planes by 0.25 A: this displacement was atributed to the large sizes of the Sn and Se atoms. Which also prevented the farocene motetes from pivoting to relieve the stram. In the present Pd complex. the outward divplacement of the S atoms from their Cp planes indicates that the palladium atom does not restrict the Cp-Fe (p angle from bending more: on the combars, it seems that more bending would relieve the outward strain at (1) and (6) Since stetic reasons cannot account for the angle at iron. some more subtle electomic infleences must favour a more nearly linear Cp Fe Cp angle. The observed geometry strongly supports the existence of an $\mathrm{Fe}-\mathrm{Pd}$ bond, since without it the Pd atom could adopt a trigonal arrangement in which the strain at the sulfur atoms would be relieved. Such a mode is certamly plasible as illustrated by the arsine and phosphine complexes [11,60,62,63] in which angles at the bridgehead metals, approximating 90°, were observed. In view of this, it is rather surprising that one more triphentphosphine ligand was not retamed. to give an unremarkahte din-bisphosphine
bisthiolato) complex. In either this geometry or the trigonal geometry previously mentioned, the palladium atom could pucker away from the FeS_{2} plane, affording further relief of steric strain. In addition, it seems that in a cis geometry the strain could be further relieved by twisting of the Cp rings to give a staggered arrangement as in several of the ferrocenylphosphine species. As noted earlier the Cp rings in the present compound are almost exactly eclipsed.

In conclusion, it seems clear that the structural and chemical [12] evidence suggests some form of $\mathrm{Fe}-\mathrm{Pd}$ bonding. Of the three bonding formulations noted ($1-$ III), we favour formulation I, containing an $\mathrm{Fe} \rightarrow \mathrm{Pd}$ dative bond.

Acknowledgement

We thank the Natural Sciences and Engineering Research Council of Canada and the University of Alberta for support of this study, Dr. R.G. Ball for X-ray data collection, and Professor Dietmar Seyferth, Barry W. Hames and Thomas G. Rucker at M.I.T. for supplying the crystals and for helpful discussions.

References

1 D.A. Roberts and G.L. Geoffroy in G. Wilkinson (Ed.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, Vol. 6, (1982) pp. 763-877 and references therein.
2 C.P. Casey and R.M. Bullock, Organometallics, 3 (1984) 1100.
3 W.C. Mercer, R.R. Whittle, E.W. Burkhardt and G.L. Geoffroy, Organometallics, 4 (1985) 68.
4 C.P. Casey and R.M. Bullock, J. Mol. Catal., 14 (1982) 283.
5 E.L. Muetterties, T.N. Rodin, E. Band, C. Brucker and W.R. Pretzer, Chem. Rev., 79 (1979) 91.
6 R. Choukroun and D. Gervais, J. Organomet. Chem., 266 (1984) C37.
7 A.T. Hutton, P.G. Pringle and B.L. Shaw, Organometallics, 2 (1983) 1889.
8 B. Delavaux, B. Chaudret, F. Dahan and R. Poilblanc, Organometallics, 4 (1985) 935.
9 R.G. Ball, F. Edelmann, G.-Y. Kiel, J. Takats and R. Drews, Organometallics, 5 (1986) 829.
10 C.P. Casey, R.M. Bullock, W.C. Fultz and A.L. Rheingold, Organometallics, 1 (1982) 1591.
11 I.R. Butler, W.R. Cullen, T.-J. Kim, S.J. Rettig and J. Trotter, Organometallics, 4 (1985) 972.
12 D. Seyferth. B.W. Hames, T.G. Rucker, M. Cowie and R.S. Dickson, Organometallics, 2 (1983) 472.
13 F.W.B. Einstein, R.K. Pomeroy, P. Rushman and A.C. Willis, Organometallics, 4 (1985) 250.
14 F.W.B. Einstein, T. Jones, R.K. Pomeroy and P.I. Rushman, J. Am. Chem. Soc., 106 (1984) 2707.
15 F.W.B. Einstein, R.K. Pomeroy, P. Rushman and A.C. Willis. J. Chem. Soc., Chem. Commun., (1983) 854.

16 H.B. Chin, M.B. Smith, R.D. Wilson and R. Bau, J. Am. Chem. Soc., 96 (1974) 5285.
17 I.W. Arndt, M.Y. Darensbourg, T. Delord and B.T. Bancroft. J. Am. Chem. Soc., 108 (1986) 2617.
18 R.J. Doedens and J.A. Ibers, Inorg. Chem., 6 (1967) 204.
19 In addition to local programs and modifications, a package of programs from the University of British Columbia was used, including: FASTFO, a modified version of FORDAP, the Fourier summation program by A. Zalkin; BUCILS, a structure factor and least-squares refinement program descended from ORFLS; BICABS, an absorption correction program which uses the Coppens-Leiserowitz-Rabinovitch logic for Gaussian integration; ORTFP, the plotting program by C.K. Johnson; ORFFE, the program for calculating bond lengths, angles and associated standard deviations by W. Busing and H.A. Levy.
20 International Tables for X-ray Crystallography, Kynoch Press, Birmingham, England, 1974; Vol. IV, Table 2.2A.
21 R.F. Stewart, E.R. Davidson and W.T. Simpson, J. Chem. Phys., 42 (1965) 3175.
22 D.T. Cromer and D. Liberman, J. Chem. Phys., 53 (1970) 1891.
23 P.M. Bailey, S.H. Taylor and P.M. Maitlis, J. Am. Chem. Soc., 100 (1978) 4711.
24 O. Piovesana, L, Sestili, C. Bellitto, A. Flamini, M. Tomassini, P.F. Zanazzi and A.R. Zanzari, J. Am. Chcm. Soc., 99 (1977) 5190

25 J. Ahmed, K. Itoh, I. Matsuda. F. Leda. Y. Ishit and JA. Ihers, Inorg Chem. I6 (1977) 20.
26 H.W. Chen and J.P. Fackler. Inorg. Chem.. 17 (1978) 12.
27 D.M. Roundhill. SGN. Roundmil, W.B. Beatheu and L Bageh. Inore Chem, 19 (1980) 365
28 Y. Kai, N. Yasuoka and N. Kasa. Bull. Chem. Soc. Jap. 52 (1979) 737.
29 Y. Zenitani. K. Inoue, Y. Kai. X Yauoka and N Kasai Bull. Chem Soc Jap. 49 (1976) 1531.
30 Y. Zenitani. H. Tokunan, Y. Ka. N. Yasuoka and N. Kasai, Bull. Chem. So Jap. S: 1478 , 1730.

32 G. Del Piero and M. Cesari, Acta (rysallogr. Sect. B. B35 (1974) 2411.
33 K. Miki. Y. Kat N. Yasuoka and N, Kasal, J. Organomet. Chem, 165 (1979) 99
34 P.W. Joly. C. Kruger. K. P. Sthch and or. Withe, Z Naturforeh B, 35 (1980) 426.
35 Y. Kobavashi, Y, litaka and H Yamaaki, Acta Crystallogr Ses B. B2s (192) 890

37 (P(1) and (PI2) refer to the centonds of the evtopentadene groups.
38 M. Cowie and M.D. Gauther, Mmer, (hem. 191980)314.
 107%.

41 N.I. Kirillowa, A.I. Guser and Ya J. Stachaor, Zh. Stakt. Khimi. 13197243.
42 F. van Bolhus. EJM de Boer and I.h. Teuben I Organomet (hem. 17011979 ; 94
 Sect. B. B30 (1974) 2290 and efermber theren.
44 K. Prout, S.R. Crithley and C. . Rees. Acta Cratallogr.. Sed. B. B30 1974 2365

 between $s p^{2}$ and $s p^{3}$ carbon is 0.04 A.
47 G. Longoni. M. Manasero and V. Sanomi. J. Am. Chem. Sec. 102 (foxo 2.24.
 (1976) 485

49 F.W.B. Einstein and J Trotter I (hem Soe (A), (1967)824.
 Sazonova. J. Organomet. Chem.. 153(1978)115.
 J. Organonet. Chem. 137 (19771217

52 V.G. Andrianor. Yu.T. Struchkw and ER. Rowinskava. Zh. Strak. Khim. 18 1107494.
53 N.D. Jones, R.E. Marsh and Jif. Rechards. Acta Crosallogr. 19 119053 330.
 488.

55 P. Batail. D. Grandjean. D. Antot and R. Dabard, I. Organomet Chom. 1021195974.

57 L.D. Spaulding. M. Hilman and.G.IB. William. I. Organomet (hem. 55 (197s) 104.
58 B.R. Davis and I. Bemal. J. Crye Mol Struct., 2 11972, 107.

60 (.6. Pierpont and R. Psenberg. Morg. Chem.. I (1972) 828.

62 W.R. Cullen. T.-I. Kim. C. W.B. Kmstem and T. Jones Ongmonetallo, 2 (1983) 714.
63 W.R. Cullen, T.-J. Kim. F. W.B. Gmben and T Jones Organometalies. 4 (1985, 340
64 K. Yasufuku, K. Aoki and If Yamnzaki, Inorg. Chem. Io (1477, 624.

67 M.R. Churchill and K.G. In. Inorg. Chem. 12 (1973) 2274
6. H. Stoechli-Evans, A.G. Ostome and R.H. Whiter, J. Organomet. Chem, 1941980 as

[^0]: " ($p(1)$ and ($\mathrm{P}(2)$ are the centroids of cyclopentadienyl groups 1 and 2. respectively. $\mathrm{H}(36)$ of the molecule at $x, 1-1,1 / 2+z$. $H(3)$ of the molecule at $1,2 \cdots, y-1,2,2$

